Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2748734.v1

ABSTRACT

Although young children generally experience mild symptoms following infection with SARS-CoV-2, severe acute and long-term complications can occur. SARS-CoV-2 mRNA vaccines elicit robust immunoglobulin profiles in children ages 5 years and older, and in adults, corresponding with substantial protection against hospitalizations and severe disease. Whether similar immune responses and humoral protection can be observed in vaccinated infants and young children, who have a developing and vulnerable immune system, remains poorly understood. To study the impact of mRNA vaccination on the humoral immunity of infant, we used a system serology approach to comprehensively profile antibody responses in a cohort of children ages 6 months to 5 years who were vaccinated with the mRNA-1273 COVID-19 vaccine (25 μg). Responses were compared with vaccinated adults (100 μg), in addition to naturally infected toddlers and young children. Despite their lower vaccine dose, vaccinated toddlers elicited a stronger functional antibody response than adults, including against variant of concerns (VOCs), without report of side effects. Moreover, mRNA vaccination was associated with a higher IgG3-dependent humoral profile against SARS-CoV-2 compared to natural infection, supporting that mRNA vaccination is effective at eliciting a robust antibody response in toddlers and young children.


Subject(s)
COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.19.496718

ABSTRACT

While immune correlates against SARS-CoV-2 are typically defined at peak immunogenicity following vaccination, immunologic responses that expand selectively during the anamnestic response following infection can provide mechanistic and detailed insights into the immune mechanisms of protection. Moreover, whether anamnestic correlates are conserved across VoCs, including the Delta and more distant Omicron variant of concern (VoC), remains unclear. To define the anamnestic correlates of immunity, across VOCs, we deeply profiled the humoral immune response in individuals recently infected with either the Delta or Omicron VoC. While limited acute N-terminal domain and RBD-specific immune expansion was observed following breakthrough, a significant immunodominant expansion of opsinophagocytic Spike-specific antibody responses focused largely on the conserved S2-domain of SARS-CoV-2 was observed 1 week after breakthrough infection. This S2-specific functional humoral response continued to evolve over 2-3 weeks following both Delta and Omicron breakthrough infection, targeting multiple VoCs and common coronaviruses. These responses were focused largely on the fusion peptide 2 and heptad repeat 1, both associated with enhanced rates of viral clearance. Taken together, our results point to a critical role of highly conserved, functional S2-specific responses in the control of SARS-CoV-2 infection, across VOCs, and thus humoral response linked to virus attenuation can guide next-generation generation vaccine boosting approaches to confer broad protection against future SARS-CoV-2 VoCs.


Subject(s)
COVID-19 , Breakthrough Pain
SELECTION OF CITATIONS
SEARCH DETAIL